where k is the Boltzmann constant. It's easy to see from this equation that a probability of one-half is obtained when the energy is the Fermi level energy; that is, when ε-μ = 0). There's no requirement that a solid must have electrons at the Fermi level. It just describes how electrons at that level would behave. In the band theory of solids, the location of the Fermi level with respect to the energy bands of a material determines the material's electrical conductivity. Insulators have a large band gap between the energy of their valence electrons, residing in a valence band, and conduction electrons, residing in a conduction band. The Fermi level sits within this gap, and there are few electrons with sufficient energy to jump the gap. In a metal, the Fermi level is within the conduction band, so there are electrons available for conduction. In semiconductors, the Fermi level is outside the conduction band, but it's close enough for electrons to be excited into the conduction band to allow some conduction. This tutorial is prologue to a description of an interesting type of insulator, the topological insulator.[1-3] As the figure shows, these have a Fermi level between the valence band and the conduction band, as in other insulators. However, their surface electrons have a different trajectory in energy-momentum space, so these materials are bulk insulators and surface conductors at the same time.
Simplified band structure of a topological insulator. (Modified image by "A13ean," via Wikimedia Commons.) |
In this illustration, tin atoms (gray) are decorated with fluorine anions (yellow). Fluorine is predicted to make this a superconducting topological insulator. (Yong Xu/Tsinghua University; Greg Stewart/SLAC.) |
"Stanene could increase the speed and lower the power needs of future generations of computer chips, if our prediction is confirmed by experiments that are underway in several laboratories around the world... Eventually, we can imagine stanene being used for many more circuit structures, including replacing silicon in the hearts of transistors... Someday we might even call this area Tin Valley rather than Silicon Valley."[5]