The platypus (Ornithorhynchus anatinus) (Photo by Dr. Philip Bethge, via Wikimedia Commons.) |
"...We're seeing the same types of organisms everywhere we look... it challenges the imagination to think of nearly identical microbes 16,000 kilometers apart from each other in the cracks of hard rock at extreme depths, pressures and temperatures."[3]Such extant bacteria are interesting objects for study, but equally interesting is research into the fossil remains of ancient bacteria. A recent example of such research was conducted by scientists from the Old Dominion University (Norfolk, Virginia), the University of Bergen (Bergen, Norway), the University of Western Australia (Perth, Australia), and the Carnegie Institution for Science (Washington, DC).[4-9] What they discovered, in the remote Pilbara region of Western Australia, was evidence of Earth's earliest life, existing 3.2-3.45 billion years ago.[4] This was fossil remains of bacteria in sedimentary rock in the Dresser Formation, west of Marble Bar, in Western Australia.[5,7-8] This discovery pushes back the known start of life on Earth by 300 million years.[5-6] The evidence is microbially induced sedimentary structures (MISS) in which sediment co-deposit with microbial mats. Such structures are common even today in tidal flats, lagoons, lakes and shores.[4] Such finds are rare, since the geologically active Earth tends to erase such evidence through hydrothermal and tectonic activity.[5,6,9] The geology of the Pilbara region of Western Australia is unique in having very old, but very pristine, sedimentary deposits. It's known for its wealth of early specimens, including stromatolites, ancient photosynthetic bacteria.[5,6,9] Now, MISS specimens can be added to the list.
A sedimentary rock from the 3.48 billion years old Dresser Formation, Pilbara region, Western Australia. The surface cracks are indicative of its biological origin. (Carnegie Institution photo by Nora Noffke.) |
"We see tufts and wrinkles and – when we look down the microscope – we see filaments tangled in sand grains. We are also seeing organic material which are the actual microbes but they are decomposed to the point that we cannot see an actual cell. You just see a mass of carbon-rich material."[7]These results are scheduled for publication in Astrobiology, so there's an astrobiological link. The Mars rovers are looking for similar biological evidence on Mars.[5,6] The Pilbara microbial mats could be seen by a Mars rover.[7] Since the Dresser MISS resembled specimens resembled those of a 2.9 billion years old deposit in South Africa, further work is expected at that location.[6,8,9] There are claims of finding traces of older life in Greenland, but those rocks have been considerably deformed, and the evidence is not as clear as for Pilbara.[7] The work was funded by the National Science Foundation, the NASA Astrobiology Institute, the NASA Exobiology and Evolutionary Biology Program, and the Carnegie Institution for Science.[6]