.6601618158468695739278121100145557784326233602847334133...,also known as sequence A005597 in the On-Line Encyclopedia of Integer Sequences (OEIS). This constant relates to numbers known as the twin primes. Twin primes are prime numbers that differ from each other by the smallest possible interval; namely, two. Thus, (3,5) and (5,7) are twin primes, as are (617,619) and many others. OEIS sequence A077800 is the list of twin primes. According to Wikipedia, there are 808,675,888,577,436 twin prime pairs below 1018. The density of prime numbers decreases as numbers get larger, so the density of twin primes decreases as well. An open problem is whether twin primes exist when we reach arbitrarily large numbers. The twin prime conjecture is that there's an infinite number of twin primes. Euclid, the famous Greek geometer, is the supposed author of this conjecture, which makes it one of the oldest conjectures in number theory.[2]
Euclid, from a 15th century Latin manuscript entitled, "Artes Liberales" (The Liberal Arts). (Via Wikimedia Commons.) |
"It's one of those problems you weren't sure people would ever be able to solve.[3]