η = 1 - (TC/TH)where η is the efficiency, TC is the temperature of the cold reservoir, and TH is the temperature of the hot reservoir. You don't need to be a statistical mechanic to realize that a very hot engine gets near-perfect efficiency. efficiency of engines is less than 100%. Simple steam engines of the type that enabled the industrial revolution have less than 10% efficiency, with improvements such as condensers bringing that up to about 25%. Steam turbines of the type used in electrical power plants have a theoretical efficiency of about 63%, based on a steam temperature of 565°C and a condenser temperature of 35°C, but an actual efficiency of about 40%. Standard Diesel engines have an efficiency of about 40%, which is increased to about 50% with turbo-charging. Automotive gasoline engines have efficiencies in the range of 20-30%. All that lost energy becomes waste heat, so you can see why there's research into energy harvesting from vehicle exhaust. Living organisms are essentially specialized chemical reactors, so the laws of thermodynamics apply to them as well. Organisms maintain their order by feeding from order in the universe; that is, they generate entropy. As a consequence of the second law of thermodynamics, they also generate heat. Jeremy England, a professor of physics at the Massachusetts Institute of Technology, has just calculated the thermodynamic efficiency for replication of the simple bacterium, E. coli.[1-2]
A false color image of E. coli bacteria. (Via Wikimedia Commons.) |
"Given what the bacterium is made of, and given how rapidly it grows, what would be the minimum amount of heat that it would have to exhaust into its surroundings? When you compare that with the amount of heat it's actually exhausting, they're roughly on the same scale... It's relatively close to the maximum efficiency."[2]Of course, seventeen percent is not a hundred percent. Bacteria still need to perform biological tasks other than replication. Still, there's the possibility that bacteria could be genetically engineered to grow faster, since there's nothing in principle against this.[2] England speculates also what this finding means in the pre-biotic emergence of self-replicating nucleic acids.[1] RNA bonding is less energetic than DNA bonding, which suggests that RNA may have evolved first, since it's thermodynamically capable of replicating faster.[2]