Love on a rooftop? Well, at least the electric part. Photovoltaic panels on the roof of a residence near Boston, Massachusetts. (Photo by Gray Watson, via Wikimedia Commons). |
"We want to do something transformative, to move beyond current silicon-based solar technology... By incorporating power-producing nanoparticles, called quantum dots, into a spreadable compound, we've made a one-coat solar paint that can be applied to any conductive surface without special equipment."[5]Silicon is an expensive material, so many research teams are investigating photovoltaics based on quantum dots of materials such as lead sulfide (PbS). Although lead sulfide is inexpensive, the process of forming the quantum dots is slow and expensive.[4] The Notre Dame approach is based on quantum dots, also, but their dots are contained in a one-coat, paintable material. Cadmium sulfide (CdS), cadmium selenide (CdSe) and titanium oxide (titania, TiO2) semiconductor nanoparticles are dispersed in an alcohol solution that's applied as a paste to transparent conductors and annealed at 473 K (200°C).[3] Coating of the titania nanoparticles with the cadmium compounds is accomplished in two ways. The ingredients were just mixed together, or the CdS or CdSe are deposited on the titania particles by an ionic layer adsorption/reaction method. The nanoparticles are then placed in a water-alcohol solution to develop a paste that's brushed onto a transparent conductor. The photovoltaic cell is completed with a graphene-Cu2S counter electrode and a sulfide/polysulfide electrolyte. The open circuit voltage was as high as 0.6 volts, and a short-circuit current of 3.1 mA/cm2 was achieved with simulated solar radiation.[3]
The Notre Dame photovoltaic paint. Most artists would identify this as a mixture of cadmium yellow and cadmium orange pigments, which is not far from the truth. (Notre Dame image, used with permission.). |