"Have you heard about the guy who invented a device to see through walls?We were so easily amused in the days before the Internet. More about seeing through walls, but without windows, later in this article. Waves are characterized by both amplitude and phase. The canonical formula for a sine wave as a function of time t is
He calls it a window!"
y(t) = A0sin(ωt + φ),in which A0 is the amplitude, ω is the angular frequency, and φ is the phase. The phase of a wave in isolation isn't important, but phase is important when waves are allowed to mix and interfere with each other. Of course, there's the example of Young's double slit experiment that demonstrates the wave nature of light, but practical applications of phase interference abound. Sound, just like light, is a wave, so interference effects based on phase difference also occur. I used this principle to good advantage several years ago in a phased-array acoustic radar for detecting passenger occupancy in automobiles.[1-2] Passenger occupancy sensing in vehicles is important to prevent unnecessary deployment of air bags and for detection of child carriers seats. In my simple phased array system, acoustic transducers, driven in controlled phase difference to each other, generate a beam of sound energy that scans a region of space. As shown in the contour plot below, such a system could detect the location and range of objects.
Fig. 13 of US Patent No. 6,549,487, "Steered beam ultrasonic sensor for object location and classification," by Devlin M. Gualtieri (April 15, 2003).[2] (Via Google Patents). |
Example images of the wall-penetrating radar system. (a) Two humans in free space (b) Two humans behind a four-inch solid concrete wall (c) Two humans behind a cinder-block wall (d) Two humans behind an eight-inch solid concrete wall. (Via Project Web Site). |